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ACCESSORY PARAMETERS IN CIRCULAR QUADRANGLES* 

P. YA. POLUBARINOVA-KOCHINA 

The problem of the conformal mapping of a circular polygon in a 
half-plane (a half-strip, a rectangle, a circle, etc.) is of 
considerable importance, e.g. in the theory of groundwater motion. The 
question of accessory (redundant1 parameters that may arise in this case 
is not trivial and deserves special analysis. Some special cases of 
such problems are considered in this paper. 

1. A circular triangle in a plane is completely defined by the position of its three 
vertices and the three angles at the vertices. For a circular quadrangle, the specification 
of three of its vertices and the four angles does not completely define the quadrangle, and 
the fourth vertex may have an infinite set of positions /l, p.306/. Let us consider this 
problem in more detail for the case of a circular rectangle (Fig.11 with given sides A,A, = a 
andA,A, = b. Draw two families of auxiliary circles tangent to the segments AlA, and 
-434, at the points Al and A,, respectively. An infinite set of these circles intersects 
at a right angle (points A and A’). We will show that the family of such points 4 (3. Y) 
is a circle through the vertices of the rectangle AlA,A,A, (Fig.1). 

Let (0, W and (a,, 0) be the centres of two circles through the point A. Then the 
equations of these circles are 

x2 + (y - b# = (b, - b)*, (x - aI)” + yz = (a1 - a)” 

The expressions for the slope of the tangents at the point A 

y,’ = -x/(y - b,), y,’ = -(x - a,)/y 

(1.1) 



and the orthogonality condition Y;yi = -9 give 

5 (5 - eJ + Y (Y - 6,) = 0 (1.2) 

Eliminating al and bL from relationships (l.l)-(1.2), we obtain the equation 

aYS -I- b (5 - 2a)y2 + (z - a)(m - b2)y + bx (cc - a)” = 0 (1.3) 

Substituting 5 = r co9 8, y = r sin 8, we can obtain a quadratic equation for r. This is 
not needed, however, and we will return to Sq.(1.3) at the end of the next section. 

2. A conformal mapping of a circular quadrangle with the angles na,n$, xy,n& (Fig.21 
in a half-plane may be analysed using a Fuchs differential equation 

The Fuchs relationships nust hold in this case: 

ai-@+ y+&+E’=2, F--E’=& 

The vertices of the quadrangle correspond to the following points in the plane 
0, 1, e, 00 (Fig.2). 

d I 

Fig.1 

The real number 

If the linearly 
conformal mapping of 
the equation 

(2.1) 

(2.2) 

5: 6 = 

Fig.2 Fig.3 

h is an accessory coefficient or parameter. For a rectangle, 

se' = 0, h = 0 

independent integrals y,,y, of Eg.(Z.l) have been found, then the 
the quadrangle AIA,A,A from the Z plane to the 5 plane is defined by 

s = 5 f iY = (GY, + CPYMC,Yl + C*YJ (2.3) 

The ratios of the three arbitrary constants Ct to the fourth constant (in general, these 
are complex numbers) are sufficient to determine three vertices of the quadrangle, 
and A,, say. For the fourth vertex, A say, 

Al,A, 
we have two real numbers h and e. One of these 

parameters is redundant (the fourth vertex must lie on a certain curve, so that a single 
parameter is sufficient). Therefore, h and e are dependent. 

Let us consider the example of a circular quadrangle with right angles. 
o = p = y = 6 = 'I,, e = 6, a' = 0 , and 

In this case, 
Eq.(2.1) is rewritten in the form 

A fractional-linear transformation takes two neighbouring circles to two straight lines, 
so that we are dealing with a right quadrangle AAAsA (Fig.1). 

AS the fundamental system of solutions of Eq.(2.4), we take the expressions /2, 3/ 

The condition II = 0 for 5 = 0 gives C, = 0 in (2.3). Assume C, = i and introduce 
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the notation 

p = Zkl/ilic, v = 2kfiK’ 
1 * 

K= 
K 

(k’ = 1/m-_ 

Considering the points A, and A,,we have 

sinY 
b= 

shv 
a=: Cscosp+C,sin)I ’ Cschv-t-iC,shv 

For a and b to be real, we must take C, = 0. Then for ‘Cg we obtain two expressions 

C, = tg pla = th vlb (2.5) 

Hence we find the relationship between h and e = lip in the form 

bla = th (2kJfrK’)itg (tk@K) (2.6) 

In the fourth vertex A (XI Y) we have 

Using (2.5) to eliminate thv in Eqs.(2.7), we obtain 

(2.7) 

If we eliminate tg u from Eqs.(2.8), we obtain the equation of a circle 

.x* + y2 - az - by = 0 (.‘+Wl 

through the points AD A,, A, and A, (Fig.1). 

3. We can now return to the cubic Eq.(1.3) and conjecture that its left-hand side is 
divisible by the left-hand side of (2.9). Indeed, (1.3) decomposes into the equation of a 
circle (2.9) and the equation of a line 

bs + ay - ab = 0 (3.1) 

i.e., the equation of the diagonal A,A, and its continuations. The line (3.1) is the 
locus of the second point of intersection of the auxiliary circles (1.1). 

Note that the condition of orthogonality of the auxiliary circles (1.1) at the point A 
(Fig.1) may be replaced with the condition that these circles intersect at an arbitrary ang 
8. Then we should have the equation 

tg t-J = (Y,' - YS?/(l + Y1'Ya') 

le 

In particular, for e = 0 or Y,' = Y,', we obtain an equation of the locus of the points 
A: 

2r (5 - a) (9 - b*) + Zy (y - b) (iL - a*) = (9 - a* ) (9 - b*), 

9 = 9 + ya 
(3.2) 

This equation splits into the equations of two circles, which may be represented in the 
form 

~-z+L~+~Y_~)a_ a";@ (3.3) 

(~-+>"+jy_++Z!$?_ (3.4) 

The circle (3.3) is the locus of zero vertices; an arc of the circle (3.4) is the boundary of 
the circular arcs forming the required quadrangle. 

For a = b, we have the circles (Fig.3) 

(x - a)' + (Y - a)' = as, zr + Y4 = a* 

For an arbitrary quadrangle without angles equal to n or Zn, we can find the locus of the 
vertices A for given A,, A,, A,, as shown in Fig.2. However, the equation relating h and 
e (or the elimination of h) must be considered specially and by a different technique in each 
case. 
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Fig.4 

Fig.5 

4. In many problems of the motion of groundwater with a free surface (in earth dams) 
or with an interface separating fresh and saline water, etc., the velocity hodoqraph is a 
circular polygon with (circular or straight) cuts. As an example, Fig.4 shows a circular cut 
ending at the point A or a straight cut ending at the point A,. If the affix of the point A 
(or al is denoted by e, then for O<e< 1 we have a straight cut, 
no Cut, and for e>l the cut starts propagating along the circular 
/4/ obtained closed-form exact solutions for polygons with cuts,i.e., 
of the vertices and a number of right angles*. For the case shown in 
to the form 

for e=l there is 
arc A&. Bereslavskii 
with-an angle 2n atone 
Fig.4, Eq.(2.1) reduces 

(4.1) 

Linearly independent partial solutions of this equation were obtained in the form 

Yl = 
chtchvt+Cshtshvt 

ch'+"t 
=$++Cthtthvt) 

El* = 
chtsbvt+Cshtcbvt 

chltYt 
+(thvt+Ctht) 

(4.2) 

Here C is a parameter to be discussed later, t is a new variable related to 5 by the 
equation 5 = th%. 

The domain of the variable t = t'+ iP is a half-strip (Fig.4cl. 
For the conformal mapping of this polygon, we can substitute the integrals (4.2) into 

expression (2.31 and to determine the constants Ci. Examining the conditions at the vertices 
A,, A,, Am we obtain 

I = 2 + iy = a (th vt + C th t)l(l + Cth vt th t) (4.3) 

The parameter C is related to the parameter e of Eq.(4.1) by the equality 

e = (C + v)lIC (1 + Cv)l (4.4) 

The accessory parameter h depends on C: 

h = v (v + C) (1 - v - zcyrc (1 + Cv)l (4.5) 

If we eliminate C between (4.41 and (4.5), we obtain a quadratic equation for h and e 
(see Fig.51: 

A.2 - 2 I(%+ - v - i) e + 11 I + 6% (VP - 1) (v - 2) - zv (v + 
l)e=O 

(4.6) 

*See also BEHESLAVSKII E.N., Mathematical Modelling of Seepage Flow with Free Boundaries 
Doctorate Dissertation, Kazan, 1990. 
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An equation of the same form (for any a, p,y,15 with one of them equal to 2) was 
obtained in 15, 6/ by different techniques, Here we take, for simplicity, the neighbourhood 
of the point 5 = 0 and seek the solution of Eq.(2.1) in series form y, = a, + a16 + an58 + 
. . . . Substituting into Eq.(2.1), we obtain 

a,h + a, (1 - a)e = 0 

EE’U,, + ~2, fh - (1 - a) (i + e) - (1 - fi) e - (1 - v)l + 

2a,e (2 - a) = 0 

Hence, for a,#O, setting a = 2, we obtain an equation for h: 

is + (1 + e) h + (1 - B) e + 1 - y - E&e = 0 

The coefficient aB remains undetermined and it may be used as the second arbitrary con- 
stant in the solution ~1. 

Returning to Bereslavskii's problem, we note that the parameter C turned out to be a 
uniformizing variable (see /l, p.414/) for Eq.(4.6), producing single-valued representations 
of the variables e and h. 

Let us check the correctness of solution (4.3). Along the line &*A, we have t = t'; 
the right-hand side of equality (4.3) is real and therefore Y = 0, which is correct. 

To pass to the line A,A, in the plane t, set t z t’ A- 3 i. Then we have 

For z we obtain instead of (4.3) 

Pt ip th vt' + C ctb :' 
i av* p _: 

1 4. C the’ cth 1’ (4.7) 

Using !4.7), we have 

i-P' p + $ 
y L= pa I$- N,pp’ . 29 + Y’ = 2 , + @a 

whence we obtain the equation of the circle containing the arc A,A,A: 

2 + y’ - [(II% - b’)/b] y = d 

It remains to consider the line A,A,AI. On this line, t=if' and the right-hand side 
of Eq.(4.3) is imaginary; at the point A, (Fig.4) we have 

tgvt"tgt" = --1/c, y = oc 

At the point A,, where 
tg ~1 = i tg'/,vn, th t = i tg'l,n = cu 

we obtain z = nC/(iCtg'/,vn) = -ib. 

We have thus shown that (4.3) indeed solves the problem of the conformal mapping of a 
quadrangle (Fig.4). 

of 

1. 

2. 

3. 

4. 

5. 
6. 

This series example from Bereslavskii's problem is remarkable not only in the simplicity 
the solution but also in the fact that the parameter ?. does not occur in the solution. 
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